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❑ The negative impacts results from their accumulation



Replicative model of 
senescence

Stress induced senescence

We passaged cells up to the

passage 21, when the 

senescence marker levels were

the highest.

Cells were treated 

with 100 µM hydrogen peroxide 

for 30 min.



Human lung cells (MRC-5) Human astrocytes (NHA5) 

Vitamin D

▪ 1, 10, 20, 25, 50, 100 nM

▪ in DMSO

▪ in EtOH

▪ in passage 8-10 (p8-10) as normal cells

▪ in passage 21 (p21) as senescent cells

▪ senescence induced by 100 µM H2O2

Materials and methods



Methods Analysis

MTT colorimetric technique Viability of the cells

Muse® Cell Cycle Assay Kit Distribution of cells in the individual 
phases of the cell cycle

Western blot analysis Molecular mechanism

Quantitative Real-time
PCR = qRT-PCR

Gene expression at the level of 
transcription

Mitochondrial respiration Measurement of respiration



Methods Analysis

MTT colorimetric technique Viability of the cells

Muse® Cell Cycle Assay Kit Distribution of cells in the individual phases 
of the cell cycle

Comet assay Damage of DNA

Western blot analysis Molecular mechanism

Quantitative Real-time PCR = qRT-
PCR

Gene expression level at the level of 
transcription

Mitochondrial respiration Measurement of respiration

Normoglycemic condition Hyperglycemic condition
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Hyperglycemic
conditions
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MRC-5 cells
❑ We tested several approaches for

influencing cells with vit D.





Vitamin D 

MRC-5 cells

not hyperglycemic
NG

Damaged the cells
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and then affected
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▪ Muse® Cell Cycle Assay Kit

▪ Normoglycemic conditon



LBR
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C (NG)          vit. D     C (HG)        vit. D 

▪ in passage 8 (p8) as normal cells ▪ in passage 21 (p21) as senescent cells

Apoptosis – caspase 3 (30 kDa) Autophagy – LC3 (12kDa)

▪ Western blot analysis

▪ normo and hyperglycemic condition

p21 p21
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▪ quantitative Real-time PCR = qRT-PCR

▪ Normoglycemic condition
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▪ Mitochondrial respiration
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▪ Mitochondrial respiration





NG

NG + vit D

HG

HG + vit D

▪ Nonsenescence cells



▪ Senescence cells
NG

NG + vit D
HG
HG + vit D

senescent NG

senescent NG + vit D

senescent HG

senescent HG + vit D



Human lung cells (MRC-5) Human astrocytes (NHA5) 

Vitamin D

▪ 1, 10, 20, 25, 50, 100 nM

▪ in DMSO

▪ in EtOH

▪ in passage 8 (p8) as normal cells

▪ in passage 21 (p21) as senescent cells

▪ senescence induced by 100 µM H2O2

Materials and methods
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Summary

In senescent MRC -5 cells vitamin D in concentration of 25 nM:

• Positively affected cell viability compared to control cells that were 

not affected by vitamin D

• We observed a slight decrease of cells in the G1 phase compared to 

the control and an increase in G2/M phase

• It reduced the expression of the p21 gene at the transcriptional and 

protein levels



Summary

In senescent MRC -5 cells vitamin D in concentration of 25 nM:

• It reduced the expression of the p53 gene at the protein level

• It increased the expression of the LBR gene at the transcriptional 

level

• Vitamin D reduced LC3 protein levels

In senescence astrocytes vitamin D in concentrations of 25 a 50 nM:

• Positively affected cell viability



LBR

In senescent MRC -5 cells vitamin D at concentration of 25 nM improves survival

of senescent cells by inhibiting expression of cell cycle inhibitor

and by increasing the expression of LBR gene.

Conclusion
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